Large Scale Simulation of Fluid-structure Interaction Using an Incompressible Smoothed Particle Hydrodynamics
نویسندگان
چکیده
Numerical simulations for free surface flow models, which are water entry of several rigid bodies, fluid tank sloshing and flood disaster over several rigid bodies were conducted by using an Incompressible smoothed particle hydrodynamics (ISPH) method. The governing equations are discretized and solved with respect to Lagrangian moving particles filled within the mesh-free computational domain and the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme to ensure divergence free velocity field and density invariance condition. In this study, we modeled the structure as a rigid body motion by two different techniques. In the first technique, we modelled the rigid body corresponding to Koshizuka et al. [1]. They proposed a passively moving-solid model to describe the motion of rigid body in a fluid. Firstly, both of fluid and solid particles are solved with the same calculation procedures. Secondly, an additional procedure is applied to solid particles. In the second technique, we compute the motions of a rigid body by direct integration of fluid pressure at the position of each particle on the body surface and the equations of translational and rotational motions were integrated in time to update the position of the rigid body at each time step. The performance of these two techniques was validated through the comparison with experimental results.
منابع مشابه
Incompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملApplication of Incompressible Smoothed Particle Hydrodynamics Method for 3D Fluid Solid Interaction Problem
A general method for fluid solid interaction problem simulations has been developed in 3D algorithm using incompressible smoothed particle hydrodynamics (SPH) method. The solid is assumed to be rigid so it can be considered as moving boundaries for fluid. Using repulsive force has been proved to be an efficient boundary treatment for incompressible SPH method before with 2D examples. The advant...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملSimulation of Fluid-Structure Interaction using an Incompressible Smoothed Particle Hydrodynamics
Numerical simulations of fluid-structure interactions in free surface flows were conducted by using an Incompressible smoothed particle hydrodynamics (ISPH) method. In the current ISPH algorithm, a stabilized incompressible SPH method by relaxing the density invariance condition is introduced as Asai et al. (2012). The governing equations are discretized and solved with respect to Lagrangian mo...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کامل